Bacillus sphaericus Binary Toxin Elicits Host Cell Autophagy as a Response to Intoxication
نویسندگان
چکیده
Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways.
منابع مشابه
Tightly bound binary toxin in the cell wall of Bacillus sphaericus.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earl...
متن کاملGenetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins.
The 51.4-kDa-41.9-kDa binary toxin produced by different strains of Bacillus sphaericus shows differential activity toward Culex quinquefasciatus, Aedes atropalpus, and Aedes aegypti mosquito larvae. The patterns of larvicidal activity toward all three mosquito species and growth retardation in A. aegypti have been shown to be due to the 41.9-kDa protein. By using mutant toxins expressed in Esc...
متن کاملImprovement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis.
Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin f...
متن کاملProduction of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may b...
متن کاملCyt1A from Bacillus thuringiensis synergizes activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae).
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein ...
متن کامل